Kadar Karbohidrat



Praktikum Proksimat
PENENTUAN KADAR KARBOHIDRAT

Tujuan Penetapan        :           Untuk menentukan kadar karbohidrat yang
terkandung dalam sampel.
Dasar Prinsip               :           Kedua cara ini adalah hidrolisis pati oleh asam
menjadi gula pereduksi. Pada penetapan cara luff
dipakai pereduksi garam Cu kompleks dimana
glukosa yang bersifat pereduksi Cu2+ menjadi CuI
atau CuO direduksi menjadi Cu2O yang berwarna
merah bata. Kemudian kelebihan CuO ditetapkan
dengan cara iodometri.
Reaksi                         :          
(C6H10O5)n + nH2O → nC6H12O6
C6H12O6 + 2CuO → Cu2O + C5H11O5 - COOH
Sisa CuO + 2KI + H2SO4 → Cu2I2 + I2
CuI2 ↔ Cu2I2 + I2
I2 + 2Na2S2O3 → 2NaI + Na2S4O6
Landasan Teori           :

Karbohidrat adalah golongan senyawa-senyawa yang terdiri dari unsur-unsur karbon (C), hidrogen (H) dan oksigen (O). Senyawa-senyawa ini dapat didefinisikan sebagai senyawa-senyawa polihidroksialdehid atau polihidroksiketon.

Karbohidrat merupakan sumber kalori utama bagi hamper seluruh penduduk di dunia, khususnya bagi penduduk Negara yang berkembang. Pada tanaman, karbohidrat dibentuk dari reaksi CO2 dan H2O dengan bantuan sinar matahari melalui proses fotosintesis dalam sel tanaman yang berklorofil.

Ditinjau dari segi gizi, karbohidrat merupakan segolongan senyawa-senyawa penting karena merupakan sumber energi yang palin ekonomis da paln tersebar luas. Bahan pangan yang dihasilkan di dunia sebagian terbesar terdiri dari bahan pangan yang kaya akan karbohidrat.

Sukrosa tidak memiliki sifat-sifat mereduksi, karena itu untuk menentukan kadar sukrosa harus dilakukan inversi terlebih dahulu menjadi glukosa dan fruktosa. Dalam hal ini kadar sukrosa harus diperhitungkan dengan faktor 0,95 karena pada hidrolisis sukrosa berubah menjadi gula invert.
           
C12H22O11        +          H2O             2C6H12O6
      Sukrosa                                            gula reduksi
Pada umumnya karbohidrat dapat dikelompokan menjadi monosakarida, oligosakarida, serta polisakarida.
1.        Monosakarida

Karbohidrat yang paling sederhana susunan molekulnya dan tidak diuraikan lagi. Monosakarida mengandung satu gugus aldehida disebut aldosa, sedangkan ketosa mempunyai satu gugus keton. Monosakarida dengan enam atom C disebut heksosa, misalnya glukosa (dekstrosa atau gula anggur).

2.      Oligosakarida

Oligosakarida adalah polimer derajat polimerisasi 2 sampai 10 dan biasanya bersifat larut dalam air. Oligosakarida yang terdiri dari 2 molekul disebut disakarida, dan bila terdiri dari 3 molekul disebut triosa. Bila sukrosa (sakarosa atau gula tebu). Terdiri dari molekul glukosa dan fruktosa, laktosa terdiri dari molekul glukosa dan galaktosa.

3.      Polisakarida

Polisakarida merupakan polimer molekul-molekul monosakarida yang dapat berantai lurus atau bercabang dan dapat dihidrolisis dengan enzim-enzim yang spesifik kerjanya.

Peran biologis Karbohidrat

·           Peran dalam biosfer

Fotosintesis menyediakan makanan bagi hampir seluruh kehidupan di bumi, baik secara langsung atau tidak langsung. Organisme autotrof seperti tumbuhan hijau, bakteri, dan alga fotosintetik memanfaatkan hasil fotosintesis secara langsung. Sementara itu, hampir semua organisme heterotrof, termasuk manusia, benar-benar bergantung pada organisme autotrof untuk mendapatkan makanan.

Pada proses fotosintesis, karbon dioksida diubah menjadi karbohidrat yang kemudian dapat digunakan untuk mensintesis materi organik lainnya. Karbohidrat yang dihasilkan oleh fotosintesis ialah gula berkarbon tiga yang dinamai gliseraldehida 3-fosfat.menurut rozison (2009) Senyawa ini merupakan bahan dasar senyawa-senyawa lain yang digunakan langsung oleh organisme autotrof, misalnya glukosa, selulosa, dan amilum.

·         Peran sebagai bahan bakar dan nutrisi
Kentang merupakan salah satu bahan makanan yang mengandung banyak karbohidrat. Karbohidrat menyediakan kebutuhan dasar yang diperlukan tubuh makhluk hidup. Monosakarida, khususnya glukosa, merupakan nutrien utama sel. Misalnya, pada vertebrata, glukosa mengalir dalam aliran darah sehingga tersedia bagi seluruh sel tubuh. Sel-sel tubuh tersebut menyerap glukosa dan mengambil tenaga yang tersimpan di dalam molekul tersebut pada proses respirasi seluler untuk menjalankan sel-sel tubuh. Selain itu, kerangka karbon monosakarida juga berfungsi sebagai bahan baku untuk sintesis jenis molekul organik kecil lainnya, termasuk asam amino dan asam lemak.

Sebagai nutrisi untuk manusia, 1 gram karbohidrat memiliki nilai energi 4 Kalori. Dalam menu makanan orang Asia Tenggara termasuk Indonesia, umumnya kandungan karbohidrat cukup tinggi, yaitu antara 70–80%. Bahan makanan sumber karbohidrat ini misalnya padi-padian atau serealia (gandum dan beras), umbi-umbian (kentang, singkong, ubi jalar), dan gula.

Namun demikian, daya cerna tubuh manusia terhadap karbohidrat bermacam-macam bergantung pada sumbernya, yaitu bervariasi antara 90%–98%. Serat menurunkan daya cerna karbohidrat menjadi 85%.] Manusia tidak dapat mencerna selulosa sehingga serat selulosa yang dikonsumsi manusia hanya lewat melalui saluran pencernaan dan keluar bersama feses. Serat-serat selulosa mengikis dinding saluran pencernaan dan merangsangnya mengeluarkan lendir yang membantu makanan melewati saluran pencernaan dengan lancar sehingga selulosa disebut sebagai bagian penting dalam menu makanan yang sehat. Contoh makanan yang sangat kaya akan serat selulosa ialah buah-buahan segar, sayur-sayuran, dan biji-bijian. Selain sebagai sumber energi, karbohidrat juga berfungsi untuk menjaga keseimbangan asam basa di dalam tubuh, berperan penting dalam proses metabolisme dalam tubuh, dan pembentuk struktur sel dengan mengikat protein dan lemak.

·         Peran sebagai cadangan energi

Beberapa jenis polisakarida berfungsi sebagai materi simpanan atau cadangan, yang nantinya akan dihidrolisis untuk menyediakan gula bagi sel ketika diperlukan. Pati merupakan suatu polisakarida simpanan pada tumbuhan. Tumbuhan menumpuk pati sebagai granul atau butiran di dalam organel plastid, termasuk kloroplas. Dengan mensintesis pati, tumbuhan dapat menimbun kelebihan glukosa. Glukosa merupakan bahan bakar sel yang utama, sehingga pati merupakan energi cadangan.

Sementara itu, hewan menyimpan polisakarida yang disebut glikogen. Manusia dan vertebrata lainnya menyimpan glikogen terutama dalam sel hati dan otot. Penguraian glikogen pada sel-sel ini akan melepaskan glukosa ketika kebutuhan gula meningkat. Namun demikian, glikogen tidak dapat diandalkan sebagai sumber energi hewan untuk jangka waktu lama. Glikogen simpanan akan terkuras habis hanya dalam waktu sehari kecuali kalau dipulihkan kembali dengan mengonsumsi makanan.

·         Peran sebagai materi pembangun

Organisme membangun materi-materi kuat dari polisakarida struktural. Misalnya, selulosa ialah komponen utama dinding sel tumbuhan. Selulosa bersifat seperti serabut, liat, tidak larut di dalam air, dan ditemukan terutama pada tangkai, batang, dahan, dan semua bagian berkayu dari jaringan tumbuhan.[10] Kayu terutama terbuat dari selulosa dan polisakarida lain, misalnya hemiselulosa dan pektin. Sementara itu, kapas terbuat hampir seluruhnya dari selulosa.

Polisakarida struktural penting lainnya ialah kitin, karbohidrat yang menyusun kerangka luar (eksoskeleton) arthropoda (serangga, laba-laba, crustacea, dan hewan-hewan lain sejenis). Kitin murni mirip seperti kulit, tetapi akan mengeras ketika dilapisi kalsium karbonat. Kitin juga ditemukan pada dinding sel berbagai jenis fungi.]

Sementara itu, dinding sel bakteri terbuat dari struktur gabungan karbohidrat polisakarida dengan peptida, disebut peptidoglikan. Dinding sel ini membentuk suatu kulit kaku dan berpori membungkus sel yang memberi perlindungan fisik bagi membran sel yang lunak dan sitoplasma di dalam sel.

Karbohidrat struktural lainnya yang juga merupakan molekul gabungan karbohidrat dengan molekul lain ialah proteoglikan, glikoprotein, dan glikolipid. Proteoglikan maupun glikoprotein terdiri atas karbohidrat dan protein, namun proteoglikan terdiri terutama atas karbohidrat, sedangkan glikoprotein terdiri terutama atas protein. Proteoglikan ditemukan misalnya pada perekat antarsel pada jaringan, tulang rawan, dan cairan sinovial yang melicinkan sendi otot. Sementara itu, glikoprotein dan glikolipid (gabungan karbohidrat dan lipid) banyak ditemukan pada permukaan sel hewan. Karbohidrat pada glikoprotein umumnya berupa oligosakarida dan dapat berfungsi sebagai penanda sel. Misalnya, empat golongan darah manusia pada sistem ABO (A, B, AB, dan O) mencerminkan keragaman oligosakarida pada permukaan sel darah merah.

Kerusakan pada karbohidrat :

      1. Pencoklatan (Browning)

Pencoklatan enzimatis terjadi pada buah-buahan yang banyak mengandung substrat senyawa fenolik, reaksi pencoklatan non enzimatis belum diketahui atau dimengerti penuh. Umumnya ada 3 macam reaksi pencoklatan non enzimatik yaitu : karamelisasi, reaksi maillard dan pencoklatan akibat vitamin C.

      2. Karamelisasi

Bila gula yang telah mencair tersebut dipanaskan terus hingga suhunya melalui titik leburnya, misalnya pada suhu 170oC maka mulailah terjadi karamelisasi sukrosa.

      3.Reaksi Maillard

Reaksi-reaksi antara karbohidrat, khususnya gula pereduksi dengan gugus amina primer, disebut reaksi-reaksi maillard. Hasil reaksi tersebut menghasilkan bahan berwarna coklat, yang sering dikendaki atau kadang-kadang malah menjadi pertanda penurunan mutu.

Penentuan Karbohidrat dengan Metode Luff Schoorl

Metode Luff Schoorl adalah berdasarkan proses reduksi dari larutan Luff Schoorl oleh gula-gula pereduksi (semua monosakarida, laktosa dan maltosa). Hidrolisis karbohidrat menjadi monosakarida yang dapat mereduksikan Cu2+ menjadi Cu1+.

Pengukuran karbohidrat yang merupakan gula pereduksi dengan metode Luff Schoorl ini didasarkan pada reaksi sebagai berikut :
R-CHO + 2 Cu2+  à R-COOH + Cu2O
2 Cu2+ + 4 I- à Cu2I2 + I2
2 S2O32- + I2 à S4O62- + 2 I-

Monosakarida akan mereduksikan CuO dalam larutan Luff menjadi Cu2O. Kelebihan CuO akan direduksikan dengan KI berlebih, sehingga dilepaskan I2. I2 yang dibebaskan tersebut dititrasi dengan larutan Na2S2O3. Pada dasarnya prinsip metode analisa yang digunakan adalah Iodometri karena kita akan menganalisa I2 yang bebas untuk dijadikan dasar penetapan kadar. Dimana proses iodometri adalah proses titrasi terhadap iodium (I2) bebas dalam larutan. Apabila terdapat zat oksidator kuat (misal H2SO4) dalam larutannya yang bersifat netral atau sedikit asam penambahan ion iodida berlebih akan membuat zat oksidator tersebut tereduksi dan membebaskan I2 yang setara jumlahnya dengan dengan banyaknya oksidator (Winarno 2007). I2 bebas ini selanjutnya akan dititrasi dengan larutan standar Na2S2O3 sehinga I2 akan membentuk kompleks iod-amilum yang tidak larut dalam air. Oleh karena itu, jika dalam suatu titrasi membutuhkan indikator amilum, maka penambahan amilum sebelum titik ekivalen.

Metode Luff Schoorl ini baik digunakan untuk menentukan kadar karbohidrat yang berukuran sedang. Dalam penelitian M.Verhaart dinyatakan bahwa metode Luff Schoorl merupakan metode tebaik untuk mengukur kadar karbohidrat dengan tingkat kesalahan sebesar 10%. Pada metode Luff Schoorl terdapat dua cara pengukuran yaitu dengan penentuan Cu tereduksi dengan I2 dan menggunakan prosedur Lae-Eynon (Anonim 2009).

Metode Luff Schoorl mempunyai kelemahan yang terutama disebabkan oleh komposisi yang konstan. Hal ini diketahui dari penelitian A.M Maiden yang menjelaskan bahwa hasil pengukuran yang diperoleh dibedakan oleh pebuatan reagen yang berbeda.

Komentar

Postingan populer dari blog ini

Kadar Abu (Ash)